2022
DOI: 10.4213/im9197e
|View full text |Cite
|
Sign up to set email alerts
|

On classification of Morse-Smale flows on projective-like manifolds

Abstract: In this paper, the problem of topological classification of gradient-like flows without heteroclinic intersections, given on a four-dimensional projective-like manifold, is solved. We show that a complete topological invariant for such flows is a bi-color graph that describes the mutual arrangement of closures of three-dimensional invariant manifolds of saddle equilibrium states. The problem of construction of a canonical representative in each topological equivalence class is solved.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 29 publications
0
0
0
Order By: Relevance