Abstract:In this work, we study the (2 + 1)-dimensional Zoomeron equation which is an extension of the famous (1 + 1)-dimensional Zoomeron equation that has been studied extensively in the literature. Using classical Lie point symmetries admitted by the equation, for the first time we develop an optimal system of one-dimensional subalgebras. Based on this optimal system, we obtain symmetry reductions and new group-invariant solutions. Again for the first time, we construct the conservation laws of the underlying equation using the multiplier method.