In light of recent work on combining control-flow and dataflow architectures on the same chip die, a new architecture based on an asymmetric multicore processor is proposed. The control-flow architectures are described as a most commonly used computer architecture today. Both multicore and manycore architectures are explained, as they are based on the same principles. A dataflow computing model assumes that data input flows through hardware as either a software or hardware dataflow implementation. In software dataflow, processors based on the control-flow paradigm process tasks based on their availability from the same queue (if there are any). In hardware dataflow architectures, the hardware is configured for a particular algorithm, and data input is streamed into the hardware, and the output is streamed back to the multicore processor for further processing. Hardware dataflow architectures are usually implemented with FPGAs. Hybrid architectures employ asymmetric multicore and manycore computer architectures that are based on the control-flow and hardware dataflow architecture, all combined on the same chip die. Advantages include faster processing time, lower power consumption (and heating), and less space needed for the hardware.