In this paper, we examine the Lyubeznik tables of two linked ideals [Formula: see text] and [Formula: see text] of a complete regular local ring [Formula: see text] containing a field. More precisely, we prove that the Lyubeznik tables of two evenly linked ideals [Formula: see text] and [Formula: see text] are the same when [Formula: see text] and [Formula: see text] both satisfy one of the following properties: (1) canonically Cohen–Macaulay, (2) generalized Cohen–Macaulay and (3) Buchsbaum. Furthermore, we give some conditions for equality of Lyubeznik tables of two linked ideals of dimension 2.