2012
DOI: 10.1007/s00158-012-0832-2
|View full text |Cite
|
Sign up to set email alerts
|

On compliance and buckling objective functions in topology optimization of snap-through problems

Abstract: This paper deals with topology optimization of static geometrically nonlinear structures experiencing snapthrough behaviour. Different compliance and buckling criterion functions are studied and applied for topology optimization of a point loaded curved beam problem with the aim of maximizing the snap-through buckling load. The response of the optimized structures obtained using the considered objective functions are evaluated and compared. Due to the intrinsic nonlinear nature of the problem, the load level a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
49
0
3

Year Published

2014
2014
2023
2023

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 85 publications
(52 citation statements)
references
References 32 publications
0
49
0
3
Order By: Relevance
“…See for instance Lindgaard and Dahl (2012) for penalization approaches concerning topology optimization of geometric non-linear compliance and buckling.…”
Section: Mathematical Formulation Of the Optimization Problemmentioning
confidence: 99%
“…See for instance Lindgaard and Dahl (2012) for penalization approaches concerning topology optimization of geometric non-linear compliance and buckling.…”
Section: Mathematical Formulation Of the Optimization Problemmentioning
confidence: 99%
“…Kemmler et al [2005] considered large deformation and stability of a structure in topology optimization. Lund [2011a, 2011b] optimized laminated composite structures by considering different types of buckling behaviors and subsequently studied the topology optimization of static geometrically nonlinear structures experiencing snap-throughs [Lindgaard and Dahl, 2013]. Luo and Tong [2015] investigated the topology design optimization to maximize critical buckling loads of thin-walled structures using a moving iso-surface threshold method.…”
Section: Introductionmentioning
confidence: 99%
“…Até o momento (2017) A metodologia desenvolvida nesta tese propõe soluções para grande parte das dificuldades apresentadas pelos autores citados (Lindgaard e Dahl, 2013;Bruns e Sigmund, 2004;Ohsaki e Nishiwaki, 2005; James e Waisman, 2016) e foi dividida em quatro tópicos importantes:…”
Section: Contribuições Científicasunclassified
“…Como relatado pelos trabalhos de (Lindgaard e Dahl, 2013;Bruns e Sigmund, 2004;Ohsaki e Nishiwaki, 2005) as restrições de deslocamento e força interna na pós-flambagem são muito difíceis de serem respeitadas pelo algoritmo de otimização nas iterações iniciais. Geralmente tais restrições encontram-se fora do domínio viável de projeto e muitos algoritmos apresentam sérias dificuldades em encontrar uma topologia inicial que não as violem, mesmo utilizando uma função Beta dentro da função objetivo (Haftka e Gürdal, 2012;Vanderplaats, 1984).…”
Section: Contribuições Científicasunclassified
See 1 more Smart Citation