Abstract. The study resulting in this paper applied a parallel algorithm based on a fourth-order compact scheme and suitable for parallel implementation of scientific/engineering systems. The particular system used for demonstration in the study was a time-dependendent system solved in parallel on a 2-head-node, 224-compute-node Apple Xserve G5 multiprocessor. The use of the approximation scheme, which necessitated discretizing in both space and time with hx space width and ht time step, produced a linear tridiagonal, almost-Toeplitz system. The solution used p processors with p ranging from 3 to 63. The speedups, sp, approached the limiting value of p only when p was small but yieldd poor computations errors which became progressively better as p increases. The parallel solution is very accurate having good speedups and accuracies but only when p is within reasonable range of values.