Abstract:For any σ-finite G-quasiinvariant measure µ given in a G-space which is G-ergodic and possesses the Steinhaus property, it is shown that every nontrivial countable µ-almost G-invariant partition of the G-space has a µ-nonmeasurable member. Для будь-якoї σ-скiнченної G-квазiiнварiантної мiри µ, що задана на G-просторi, є G-ергодичною та має властивiсть Штейнхауса, показано, що кожне нетривiальне розбиття µ-майже G-iнварiантного розбиття G-простору має µневимiрний член.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.