In the present paper we give a rough classification of exterior differential forms on a Riemannian manifold. We define conformal Killing, closed conformal Killing, coclosed conformal Killing and harmonic forms due to this classification and consider these forms on a Riemannian globally symmetric space and, in particular, on a rank-one Riemannian symmetric space. We prove vanishing theorems for conformal Killing L 2-forms on a Riemannian globally symmetric space of noncompact type. Namely, we prove that every closed or co-closed conformal Killing L 2-form is a parallel form on an arbitrary such manifold. If the volume of it is infinite, then every closed or co-closed conformal Killing L 2-form is identically zero. In addition, we prove vanishing theorems for harmonic forms on some Riemannian globally symmetric spaces of compact type. Namely, we prove that all harmonic one-formsvanish everywhere and every harmonic r -form r 2 is parallel on an arbitrary such manifold. Our proofs are based on the Bochnertechnique and its generalized version that are most elegant and important analytical methods in differential geometry “in the large”.