Pump-controlled hydraulic cylinder drives may offer improved energy efficiency, compactness, and plug-and-play installation compared to conventional valve-controlled hydraulic systems and thus have the potential of replacing conventional hydraulic systems as well as electro-mechanical alternatives. Since the late 1980s, research into how to configure the hydraulic circuit of pump-controlled cylinder drives has been ongoing, especially in terms of compensating the uneven flow requirements required by a differential cylinder. Recently, research has also focused on other aspects such as replacing a vented oil tank with a small-volume pressurized accumulator including the consequences of this in terms of thermal behavior. Numerous references describe the advantages and shortcomings of pump-controlled cylinder drives compared to conventional hydraulic systems or electro-mechanical drives. This paper presents a throughout literature review starting from the earliest concepts based on variable-displacement hydraulic pumps and vented reservoirs to newer concepts based on variable-speed electric drives and sealed reservoirs. By classifying these drives into several proposed classes it is found that the architectures considered in the literature reduce to a few basic layouts. Finally, the paper compares the advantages and shortcomings of each drive class and seek to predict future research tasks related to pump-controlled cylinder drives.
IntroductionWith an increased industrial focus on energy efficiency, plug-and-play installation, and compactness, conventional valve-controlled hydraulic cylinder drives are increasingly being replaced by electro-mechanical alternatives, such as roller or ball screws [1], especially for small power classes. This happens despite the well-known advantages of hydraulic linear actuation such as large force/power densities, reliability, and robustness. Hydraulic actuation is, however, still the preferred solution for many applications such as industrial presses, large mobile machinery, crane manipulators, primary aircraft control etc. [2][3][4]. Among other reasons this is due to certain limitations for the electro-mechanical alternatives, such as limited reliability (e.g., shock loads damage), the difficulties of implementing overload/failure protection and/or limited force capabilities [5][6][7]. To strengthen the position regarding these applications and to make hydraulic cylinder drives competitive with electro-mechanical drives for low power applications, there is a need to enhance both the energy efficiency and the overall flexibility of hydraulic cylinder drives.The flexibility of a hydraulic system may be related to how power is being distributed between the prime mover and the actuator(s). As illustrated in Figure 1, at least three different power distribution topologies exist: hydraulic, mechanical, and electrical distribution.