Abstract:In this paper, we study the magnetic Schrödinger operator in a three-dimensional layer. We obtain an estimate for the number of eigenvalues of this operator lying to the left of the essential spectrum threshold. We show that the magnetic Schrödinger operator to the left of the continuous spectrum threshold can have only a finite number of eigenvalues of infinite multiplicity.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.