Q-conditional symmetries (nonclassical symmetries) for the general class of twocomponent reaction-diffusion systems with non-constant diffusivities are studied. Using the recently introduced notion of Q-conditional symmetries of the first type, an exhausted list of reaction-diffusion systems admitting such symmetry is derived. The results obtained for the reaction-diffusion systems are compared with those for the scalar reactiondiffusion equations. The symmetries found for reducing reaction-diffusion systems to two-dimensional dynamical systems, i.e., ODE systems, and finding exact solutions are applied. As result, multiparameter families of exact solutions in the explicit form for a nonlinear reaction-diffusion system with an arbitrary diffusivity are constructed. Finally, the application of the exact solutions for solving a biologically and physically motivated system is presented.