The actinide cubic Laves compounds NpAl2, NpOs2, NpFe2, and PuFe2 have been examined by X-ray magnetic circular dichroism (XMCD) at the actinide M4,5 absorption edges and Os L2,3 absorption edges. They have the interesting feature that the An−An spacing is close to the so-called Hill limit so that substantial hybridization between the 5f states on neighboring atoms is expected to occur. The XMCD experiments performed at the M4,5 absorption edges of Np and Pu allow us to determine the spectroscopic branching ratio, which gives information on the coupling scheme in these materials. In all materials the intermediate coupling scheme is found appropriate. Comparison with the SQUID data for NpOs2 and PuFe2 allows a determination of the individual orbital and spin magnetic moments and the magnetic dipole contribution m md . The resulting orbital and spin magnetic moments are in good agreement with earlier values determined by neutron diffraction, and the values of m md are non-negligible, and close to those predicted for intermediate coupling. There is a comparatively large induced moment on the Os atom in NpOs2 such that the Os contribution to the total moment per formula unit is ∼30% of the total. The spin and orbital moments at the Os site are parallel, in contrast to the anti-parallel configuration of Os impurities in 3d ferromagnetic transition metals. Calculations using the LDA+U technique are reported. The ab initio computed XMCD spectra show good agreement with experimental spectra for small values (0-1eV) of the Hubbard U parameter, which underpins that 5f electrons in these compounds are relatively delocalized. The calculations confirm the sign and magnitude of the experimentally determined induced magnetic moments on the Os site in NpOs2. A posteriori, by comparison of the theoretical and measured XMCD spectra, we can determine the most appropriate LSDA+U variant and the value of U.