In this chapter an algorithm for nonlinear explicit model predictive control is presented. A low complexity receding horizon control law is obtained by approximating the optimal control law using multiscale basis function approximation. Simultaneously, feasibility and stability of the approximate control law is ensured through the computation of a capture basin (region of attraction) for the closed-loop system. In a previous work, interval methods were used to construct the capture basin (feasible region), yet this approach suffered due to slow computation times and high grid complexity.In this chapter, we suggest an alternative to interval analysis based on zonotopes. The suggested method significantly reduces the complexity of the combined function approximation and verification procedure through the use of DC (difference of convex) programming, and recursive splitting. The result is a multiscale function approximation method with improved computational efficiency for fast nonlinear explicit model predictive control with guaranteed stability and constraint satisfaction.
IntroductionThis chapter proposes a method of approximate explicit model predictive control (MPC) for nonlinear systems. While it is possible to compute the optimal control law offline for a limited number of cases (e.g., affine or piecewise affine dynamics [5,20,29]), it is in general necessary to approximate, and therefore validation techniques are required for the resulting approximate closed-loop system. In this chapter, we present a new technique for approximation and certification of stability and recursive feasibility for explicit NMPC controllers, in which the control law is precomputed and verified offline in order to speed online computation. The control law is approximated via an adaptive interpolation using second order interpolets, which results in an extremely fast online computation time and low data storage. The resulting suboptimal closed-loop system is verified by computing an inner approximation of the capture basin and an algorithm is proposed that iteratively improves the approximation where needed in order to maximize the size of the capture basin. The key novelty of this chapter is the use of difference of convex (DC) programming and zonotope approximation in order to significantly improve both the computational performance and efficacy of the calculation of the capture basin.Methods for the approximation of explicit solutions of nonlinear model predictive control (NMPC) problems have been addressed recently by various authors (e.g., see [8,19]). In [8], the authors compute an approximate control lawũ(x) with a bound on the controller approximation error ( u * (x) −ũ(x) ), from which performance and stability properties are derived using set membership (SM) function approximation theory. In [19] the authors use multiparametric nonlinear programming to compute an explicit approximate solution of the NMPC problem defined on an orthogonal structure of the state-space partition. An additional example of the approximat...