A facial unique-maximum coloring of a plane graph is a proper coloring of the vertices using positive integers such that each face has a unique vertex that receives the maximum color in that face. Fabrici and Göring (2016) proposed a strengthening of the Four Color Theorem conjecturing that all plane graphs have a facial uniquemaximum coloring using four colors. This conjecture has been disproven for general plane graphs and it was shown that five colors suffice. In this paper we show that plane graphs, where vertices of degree at least four induce a star forest, are facially uniquemaximum 4-colorable. This improves a previous result for subcubic plane graphs by Andova, Lidický, Lužar, and Škrekovski (2018). We conclude the paper by proposing some problems.