A model of investment in crop sowing machinery is applied to wheat production under current and projected climatic conditions at several locations in south-western Australia. The model includes yield responses to time of sowing at each location given current and projected climatic conditions. These yield relationships are based on wheat growth simulation modelling that in turn draws on data from a down-scaled global circulation model. Wheat price distributions and cost of production data at each location, in combination with the time of sowing yield relationships are used to determine a farmer's optimal investment in crop sowing work rate under each climate regime. The key finding is that the impacts of climate change on profit distributions are often marked, yet mostly modest changes in investment in work rate form part of the profit-maximising response to climate change. The investment response at high versus low rainfall locations mostly involves increases and decreases in work rates, respectively. However, changes to investment in work rate within a broadly similar rainfall region are not always uniform. The impacts of climate change on investments in work rate at a particular location are shown to require knowledge of several factors, especially how climate change alters the pattern of yield response to the time of sowing at that location.