This article proves some theorems to approximate fixed point of Zamfirescu operators on normed spaces for some two-step iterative schemes, namely, Picard-Mann iteration, Ishikawa iteration, S-iteration, and Thianwan iteration, with their errors. We compare the aforementioned iterations using numerical approach; the results show that S-iteration converges faster than other iterations followed by Picard-Mann iteration, while Ishikawa iteration is the least in terms of convergence rate. These results also suggest the best among two-step iterative fixed point schemes in the literature.