As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams.In this paper, we introduce a new approach to handling graph streams, by instead seeking solutions for the parameterized versions of these problems. Here, we are given a parameter k and the objective is to decide whether there is a solution bounded by k. By combining kernelization techniques with randomized sketch structures, we obtain the first streaming algorithms for the parameterized versions of Maximal Matching and Vertex Cover. We consider various models for a graph stream on n nodes: the insertion-only model where the edges can only be added, and the dynamic model where edges can be both inserted and deleted. More formally, we show the following results:• In the insertion only model, there is a one-pass deterministic algorithm for the parameterized Vertex Cover problem which computes a sketch using