This study proposes a novel method for identifying the primary conspirators involved in terrorist activities. To map the information related to terrorist activities, we gathered information from different sources of real cases involving terrorist attacks. We extracted useful information from available sources and then mapped them in the form of terrorist networks, and this mapping provided us with insights in these networks. Furthermore, we came up with a novel centrality measure for identifying the primary conspirators of a terrorist attack. Because the leaders of terrorist attacks usually direct conspirators to conduct terrorist activities, we designed a novel algorithm that can identify such leaders. This algorithm can identify terrorist attack leaders even if they have less connectivity in networks. We tested the effectiveness of the proposed algorithms on four real‐world datasets and conducted an experimental evaluation, and the proposed algorithms could correctly identify the primary conspirators and leaders of the attacks in the four cases. To summarize, this work may provide information support for security agencies and can be helpful during the trials of the cases related to terrorist attacks.