2022
DOI: 10.48550/arxiv.2205.00527
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On Finite Analogs of Schmidt's Problem and Its Variants

Abstract: We refine Schmidt's problem and a partition identity related to 2-color partitions which we will refer to as Uncu-Andrews-Paule theorem. We will approach the problem using Boulet-Stanley weights and a formula on Rogers-Szegő polynomials by Berkovich-Warnaar, and present various Schmidt's problem alike theorems and their refinements. Our new Schmidt type results include the use of even-indexed parts' sums, alternating sum of parts, and hook lengths as well as the odd-indexed parts' sum which appears in the orig… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?