In this paper, we consider the motion of an asymmetric heavy gyrostat, when its center of mass lies along one of the principal axes of inertia. We determine the possible permanent rotations and, by means of the Energy-Casimir method, we give sufficient stability conditions. We prove that there exist permanent stable rotations when the gyrostat is oriented in any direction of the space, by the action of two spinning rotors, one of them aligned along the principal axis, where the center of mass lies. We also derive necessary stability conditions that, in some cases, are the same as the sufficient ones.