2022
DOI: 10.3390/math10224365
|View full text |Cite
|
Sign up to set email alerts
|

On Focal Borel Probability Measures

Abstract: The novel concept of focality is introduced for Borel probability measures on compact Hausdorff topological spaces. We characterize focal Borel probability measures as those Borel probability measures that are strictly positive on every nonempty open subset. We also prove the existence of focal Borel probability measures on compact metric spaces. Lastly, we prove that the set of focal (regular) Borel probability measures is convex but not extremal in the set of all (regular) Borel probability measures.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 14 publications
0
0
0
Order By: Relevance