Abstract:This paper explores a simple yet powerful relationship between the problem of counting lattice points and the computation of Dedekind sums. We begin by constructing and proving a sharp upper estimate for the number of lattice points in tetrahedra with some irrational coordinates for the vertices. Besides providing a sharper estimate, this upper bound (Theorem 1.1) becomes an equality (i.e. gives the exact number of lattice points) in a tetrahedron where the lengths of the edges divide each other. This equality… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.