2016
DOI: 10.15559/16-vmsta55
|View full text |Cite
|
Sign up to set email alerts
|

On fractal faithfulness and fine fractal properties of random variables with independent $Q^*$-digits

Abstract: We develop a new technique to prove the faithfulness of the Hausdorff-Besicovitch dimension calculation of the family Φ(Q * ) of cylinders generated by Q * -expansion of real numbers. All known sufficient conditions for the family Φ(Q * ) to be faithful for the Hausdorff-Besicovitch dimension calculation use different restrictions on entries q 0k and q (s−1)k . We show that these restrictions are of purely technical nature and can be removed. Based on these new results, we study fine fractal properties of rand… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 12 publications
0
1
0
2
Order By: Relevance
“…First steps in this direction have been done by A. Besicovitch (), who proved the faithfulness for the family of cylinders of a binary expansion. His result was extended by P. Billingsley () to the family of s ‐adic cylinders, by M. Pratsiovytyi () to the family of Q ‐ S ‐cylinders, by S. Albeverio and G. Torbin () to the family of Q‐cylinders for those matrices Q whose elements p0k,p(s1)k are bounded away from zero, by M. Ibragim and G. Torbin () to the family of Q‐cylinders for a rather wide family of matrices Q (this family contains all Q whose elements pik are bounded away from 1).…”
Section: Introductionmentioning
confidence: 99%
“…First steps in this direction have been done by A. Besicovitch (), who proved the faithfulness for the family of cylinders of a binary expansion. His result was extended by P. Billingsley () to the family of s ‐adic cylinders, by M. Pratsiovytyi () to the family of Q ‐ S ‐cylinders, by S. Albeverio and G. Torbin () to the family of Q‐cylinders for those matrices Q whose elements p0k,p(s1)k are bounded away from zero, by M. Ibragim and G. Torbin () to the family of Q‐cylinders for a rather wide family of matrices Q (this family contains all Q whose elements pik are bounded away from 1).…”
Section: Introductionmentioning
confidence: 99%
“…Як вiдомо (див., наприклад, [4,6,7] та огляд лiтератури в цих роботах) прикладами довiрчих систем покриттiв є системи цилiндрiв, що породжуються s-адичним представленням дiйсних чисел [5]; системи покриттiв, якi породжуються Q-представленнями [14]; системи покриттiв, що породжуються Q * -представленнями, для яких виконується умова ( [4]):…”
Section: вступunclassified
“…З метою пошуку достатнiх умов довiрчостi для системи Q * -цилiндрiв, у серiї робiт М. Iбрагiма та Г.Торбiна ( [6,7] було запропоновано новий пiдхiд до знаходження довiрчостi систем цилiндрiв, породжених Q * -представленнями дiйсних чисел. У цiй роботi ми удосконалюємо цей пiдхiд та отримуємо загальнi достатнi умови довiрчостi систем Q * -цилiндрiв, якi у певному сенсi є близькими до необхiдних умов.…”
Section: вступunclassified