In underwater acoustic networks, the accurate estimation of routing weights is NP-hard due to the time-varying environment. Fuzzy logic is a powerful tool for dealing with vague problems. Software-defined networking (SDN) is a promising technology that enables flexible management by decoupling the data plane from the control plane. Inspired by this, we proposed a fuzzy logic-based software-defined routing scheme for underwater acoustic networks (FL-SDUAN). Specifically, we designed a software-defined underwater acoustic network architecture. Based on fuzzy path optimization (FPO-MST) and fuzzy cut-set optimization (FCO-MST), two minimum spanning tree algorithms under different network scales were proposed. In addition, we compared the proposed algorithms to state-of-the-art methods regarding packet delivery rate, end-to-end latency, and throughput in different underwater acoustic network scenarios. Extensive experiments demonstrated that a trade-off between performance and complexity was achieved in our work.