2019
DOI: 10.15421/241902
|View full text |Cite
|
Sign up to set email alerts
|

On generalized characteristics of smoothness of functions and on average $\nu$-widths in the space $L_2(\mathbb{R})$

Abstract: Estimates above and estimates below have been obtained for Kolmogorov, linear and Bernshtein average $\nu$-widths on the classes of functions $W^r (\omega^w, \Psi)$, where $r \in \mathbb{N}$, $\omega^w(f)$ is the generalized characteristic of smoothness of a function $f \in L_2(\mathbb{R})$, $\Psi$ is a majorant. Exact values of the enumerated extremal characteristics of approximation, following from the one condition on the majorant were obtained too.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?