2021
DOI: 10.48550/arxiv.2104.11295
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On Geodesic Distances and Contextual Embedding Compression for Text Classification

Abstract: In some memory-constrained settings like IoT devices and over-the-network data pipelines, it can be advantageous to have smaller contextual embeddings. We investigate the efficacy of projecting contextual embedding data (BERT) onto a manifold, and using nonlinear dimensionality reduction techniques to compress these embeddings. In particular, we propose a novel post-processing approach, applying a combination of Isomap and PCA. We find that the geodesic distance estimations, estimates of the shortest path on a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 2 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?