2014
DOI: 10.1016/j.ejc.2013.06.044
|View full text |Cite
|
Sign up to set email alerts
|

On geometric distance-regular graphs with diameter three

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
19
0
4

Year Published

2014
2014
2021
2021

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 9 publications
(23 citation statements)
references
References 10 publications
0
19
0
4
Order By: Relevance
“…Уже после написания данной статьи С. Банг и Дж. Кулен [6] сообщили нам, что показали несуществование графов с массивом пересечений…”
Section: теоремаunclassified
See 2 more Smart Citations
“…Уже после написания данной статьи С. Банг и Дж. Кулен [6] сообщили нам, что показали несуществование графов с массивом пересечений…”
Section: теоремаunclassified
“…Таким образом, результат [6] вместе с доказанной в нашей работе теоремой позволяет сформулировать следующее утверждение.…”
Section: теоремаunclassified
See 1 more Smart Citation
“…Hence θ 3 = −5 and thus 2 ≤ ψ 1 ≤ 4 and ψ 1 ≥ Remark 4.6 It seems to be difficult to classify distance-regular graphs with θ D = −3 satisfying k = 3(a 1 + 1) and c 2 = 1 (see [4,38]). It follows by [4], [7] and [38] that any distance-regular graph in Theorem 4.5 (9) (i.e., a distance-regular graph with θ D = −3 satisfying k = 3(a 1 + 1), c 2 = 1 and a 1 , …”
Section: Since Parametersmentioning
confidence: 99%
“…Bang [4] showed that if k > 8 3 (a 1 + 1), then a distanceregular graph of valency k is 4-claw-free if and only if Γ is geometric with smallest eigenvalue −3. In [4], Bang started the classification of geometric distance-regular graphs with smallest eigenvalue −3 and c 2 > 1, and the results of Bang and Koolen [7] and Gavrilyuk and Makhnev [21] completed the classification.…”
mentioning
confidence: 99%