Metasurfaces (MSs) have been utilized to manipulate different properties of electromagnetic waves. By combining local control over the wave amplitude, phase, and polarization into a single tunable structure, a multifunctional and reconfigurable metasurface can be realized, capable of full control over incident radiation. Here, we experimentally validate a multi-functional metasurface architecture for the microwave regime, where in principle variable loads are connected behind the backplane to reconfigurably shape the complex surface impedance. As a proof-of-concept step, we fabricate several metasurface instances with static loads in different configurations (surface mount capacitors and resistors of different values in different connection topologies) to validate the approach and showcase the different achievable functionalities. Specifically, we show perfect absorption for oblique incidence (both polarizations), broadband linear polarization conversion, and beam splitting, demonstrating control over the amplitude, polarization state, and wavefront, respectively. Measurements are performed in the 4-18 GHz range inside an anechoic chamber and show good agreement with theoretically-anticipated results. Our results clearly demonstrate the practical potential of the proposed architecture for reconfigurable electromagnetic wave manipulation.