<abstract>
<p>Gravimetry is a discipline of geophysics that deals with observation and interpretation of the earth gravity field. The acquired gravity data serve the study of the earth interior, be it the deep or the near surface one, by means of the inferred subsurface structural density distribution. The subsurface density structure is resolved by solving the gravimetric inverse problem. Diverse methods and approaches exist for solving this non-unique and ill-posed inverse problem. Here, we focused on those methods that do not pre-constrain the number or geometries of the density sources. We reviewed the historical development and the basic principles of the Growth inversion methodology, which belong to the methods based on the growth of the model density structure throughout an iterative exploration process. The process was based on testing and filling the cells of a subsurface domain partition with density contrasts through an iterative mixed weighted adjustment procedure. The procedure iteratively minimized the data misfit residuals jointly with minimizing the total anomalous mass of the model, which facilitated obtaining compact meaningful source bodies of the solution. The applicability of the Growth inversion approach in structural geophysical studies, in geodynamic studies, and in near surface gravimetric studies was reviewed and illustrated. This work also presented the first application of the Growth inversion tool to near surface microgravimetric data with the goal of seeking very shallow cavities in archeological prospection and environmental geophysics.</p>
</abstract>