Abstract:In this paper, we investigate horizontal lightlike hypersurfaces of Robertson-Walker spacetimes. Some results involving the unique existence of the screen distribution and the symmetry of the induced Ricci curvature tensor of horizontal lightlike hypersurfaces are presented. We also obtain some properties concerning the symmetry and the parallelism of the second fundamental forms of such lightlike hypersurfaces.
“…Duggal and A. Bejancu in [9] (see also [10], [11]). Lightlike hypersurfaces in various spaces have been studied by many authors including those of [4], [8], [10], [17], [18], [19], [21], [22], [23], [24], [25].…”
Lightlike hypersurfaces of a statistical manifold are studied. It is shown that a lightlike hypersurface of a statistical manifold is not a statistical manifold with respect to the induced connections, but the screen distribution has a canonical statistical structure. Some relations between induced geometric objects with respect to dual connections in a lightlike hypersurface of a statistical manifold are obtained. An example is presented. Induced Ricci tensors for lightlike hypersurface of a statistical manifold are computed.
“…Duggal and A. Bejancu in [9] (see also [10], [11]). Lightlike hypersurfaces in various spaces have been studied by many authors including those of [4], [8], [10], [17], [18], [19], [21], [22], [23], [24], [25].…”
Lightlike hypersurfaces of a statistical manifold are studied. It is shown that a lightlike hypersurface of a statistical manifold is not a statistical manifold with respect to the induced connections, but the screen distribution has a canonical statistical structure. Some relations between induced geometric objects with respect to dual connections in a lightlike hypersurface of a statistical manifold are obtained. An example is presented. Induced Ricci tensors for lightlike hypersurface of a statistical manifold are computed.
In this paper, we introduce [Formula: see text]-Ricci curvature and [Formula: see text]-scalar curvature on lightlike hypersurfaces of a GRW spacetime. Using these curvatures, we establish some inequalities for lightlike hypersurfaces of a GRW spacetime. Using these inequalities, we obtain some characterizations on lightlike hypersurfaces. We also get Chen–Ricci inequality and Chen inequality on a screen homothetic lightlike hypersurfaces of a GRW spacetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.