Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The need for increased application performance in high-integrity systems like those in avionics is on the rise as software continues to implement more complex functionalities. The prevalent computing solution for future high-integrity embedded products are multi-processors systems-on-chip (MPSoC) processors. MPSoCs include CPU multicores that enable improving performance via thread-level parallelism. MPSoCs also include generic accelerators (GPUs) and application-specific accelerators. However, the data processing approach (DPA) required to exploit each of these underlying parallel hardware blocks carries several open challenges to enable the safe deployment in high-integrity domains. The main challenges include the qualification of its associated runtime system and the difficulties in analyzing programs deploying the DPA with out-of-the-box timing analysis and code coverage tools. In this work, we perform a thorough analysis of vector extensions (VExt) in current COTS processors for high-integrity systems. We show that VExt prevent many of the challenges arising with parallel programming models and GPUs. Unlike other DPAs, VExt require no runtime support, prevent by design race conditions that might arise with parallel programming models, and have minimum impact on the software ecosystem enabling the use of existing code coverage and timing analysis tools. We develop vectorized versions of neural network kernels and show that the NVIDIA Xavier VExt provide a reasonable increase in guaranteed application performance of up to 2.7x. Our analysis contends that VExt are the DPA approach with arguably the fastest path for adoption in high-integrity systems.
The need for increased application performance in high-integrity systems like those in avionics is on the rise as software continues to implement more complex functionalities. The prevalent computing solution for future high-integrity embedded products are multi-processors systems-on-chip (MPSoC) processors. MPSoCs include CPU multicores that enable improving performance via thread-level parallelism. MPSoCs also include generic accelerators (GPUs) and application-specific accelerators. However, the data processing approach (DPA) required to exploit each of these underlying parallel hardware blocks carries several open challenges to enable the safe deployment in high-integrity domains. The main challenges include the qualification of its associated runtime system and the difficulties in analyzing programs deploying the DPA with out-of-the-box timing analysis and code coverage tools. In this work, we perform a thorough analysis of vector extensions (VExt) in current COTS processors for high-integrity systems. We show that VExt prevent many of the challenges arising with parallel programming models and GPUs. Unlike other DPAs, VExt require no runtime support, prevent by design race conditions that might arise with parallel programming models, and have minimum impact on the software ecosystem enabling the use of existing code coverage and timing analysis tools. We develop vectorized versions of neural network kernels and show that the NVIDIA Xavier VExt provide a reasonable increase in guaranteed application performance of up to 2.7x. Our analysis contends that VExt are the DPA approach with arguably the fastest path for adoption in high-integrity systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.