2003
DOI: 10.1137/s0895480101397219
|View full text |Cite
|
Sign up to set email alerts
|

On Z2k -Linear and Quaternary Codes

Abstract: For any integer k ≥ 1, an isometry between codes over Z 2 k+1 and codes over Z 4 is defined and used to give an equivalent generalization of the Gray map to the one introduced in [C. Carlet, IEEE Trans. Inform. Theory, 44 (1998), pp. 1543-1547. Several results related to the linearity or nonlinearity of codes over Z 2 k+1 , as well as its corresponding images under this map, are given. These results are similar to those presented in Theorems 4, 5, and 6 of [1. Introduction. For a given integer n ≥ 1 the Gray m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
9
0
38

Year Published

2005
2005
2022
2022

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(47 citation statements)
references
References 7 publications
0
9
0
38
Order By: Relevance
“…For some of the works done in this direction we refer to [1,3,4,7,9,11] and the references there in. There are also some work on the codes over the ring Z 8 , such as [2,6,8].…”
Section: Introductionmentioning
confidence: 99%
“…For some of the works done in this direction we refer to [1,3,4,7,9,11] and the references there in. There are also some work on the codes over the ring Z 8 , such as [2,6,8].…”
Section: Introductionmentioning
confidence: 99%
“…The Gray map has been extended to finite chain rings ( [4]) and, specifically, the image under the Gray map of codes defined over the ring Z Z/p m Z Z has been studied by several authors ( [2], [22], [8], [19]). The ring Z Z/p m Z Z is a particular case of a Galois ring (see section 2) and a natural question to ask is to what extent are the known results for codes defined on the former ring and its Gray image valid for codes defined on the latter ring and its Gray image.…”
Section: Introductionmentioning
confidence: 99%
“…En el desarrollo de este trabajo, análogamente a [51,52], introduciremos una isometría ϕ de Z n 2 k+1 a Z 2 k−1 n 4 en la que nos apoyaremos para estudiar propiedades de ciclicidad y negaciclicidad de la imagen bajo ϕ de códigos sobre Z 2 k+1 . Usaremos los resultados obtenidos para definir isometrías de Gray sobre Z n 2 k+1 que resultan ser permutación-equivalentes, e inducir propiedades de casi-ciclicidad en la imagen de Gray de dichos códigos.…”
Section: VIunclassified
“…Usaremos los resultados obtenidos para definir isometrías de Gray sobre Z n 2 k+1 que resultan ser permutación-equivalentes, e inducir propiedades de casi-ciclicidad en la imagen de Gray de dichos códigos. Cuando la unidad γ sea 1 o λ , los resultados que obtendremos serán generalizaciones naturales de las principales aportaciones presentadas en [33,36,51,52]. Pero cuando la unidad γ sea δ 1 o δ 2 y k ≥ 3, obtendremos familias de códigos sobre Z 4 que son invariantes con respecto a un producto de Kronecker del corrimiento cíclico y negacíclico (cf.…”
Section: VIunclassified
See 1 more Smart Citation