Abstract:We show that the image of a subshift X under various injective morphisms of symbolic algebraic varieties over monoid universes with algebraic variety alphabets is a subshift of finite type, respectively a sofic subshift, if and only if so is X. Similarly, let G be a countable monoid and let A, B be Artinian modules over a ring. We prove that for every closed subshift submodule
$\Sigma \subset A^G$
and every injective G-equivariant uniformly continuous module homomorphism
… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.