Abstract. A complete solution of an implicit second order ordinary differential equation is defined by an immersive two-parameter family of geometric solutions on the equation hypersurface. We show that a completely integrable equation is either of Clairaut type or of first order type. Moreover, we define a complete singular solution, an immersive one-parameter family of singular solutions on the contact singular set. We give conditions for existence of a complete solution and a complete singular solution of implicit second order ordinary differential equations.