Explicit motor imagery
Conversion paralysis fMRI
Mental rotation a b s t r a c tMotor imagery is a widely used paradigm for the study of cognitive aspects of action control, both in the healthy and the pathological brain. In this paper we review how motor imagery research has advanced our knowledge of behavioral and neural aspects of action control, both in healthy subjects and clinical populations. Furthermore, we will illustrate how motor imagery can provide new insights in a poorly understood psychopathological condition: conversion paralysis (CP). We measured behavioral and cerebral responses with functional magnetic resonance imaging (fMRI) in seven CP patients with a lateralized paresis of the arm as they imagined moving the affected or the unaffected hand. Imagined actions were either implicitly induced by the task requirements, or explicitly instructed through verbal instructions. We previously showed that implicitly induced motor imagery of the affected limb leads to larger ventromedial prefrontal responses compared to motor imagery of the unaffected limb. We interpreted this effect in terms of greater self-monitoring of actions during motor imagery of the affected limb. Here, we report new data in support of this interpretation: inducing self-monitoring of actions of both the affected and the unaffected limb (by means of explicitly cued motor imagery) abolishes the activation difference between the affected and the unaffected hand in the ventromedial prefrontal cortex. Our results show that although implicit and explicit motor imagery both entail motor simulations, they differ in terms of the amount of action monitoring they induce. The
IntroductionMotor imagery is a familiar aspect of most people's everyday experience. It is important for learning complex motor skills like sports (Murphy, 1994), as well as re-learning motor skills in neurological populations (Dijkerman et al., 2004;. The potential of motor imagery in clinical applications is broad, ranging from Brain-Computer interfacing (Pfurtscheller and Neuper, 2006)