2020
DOI: 10.1016/j.tws.2020.106879
|View full text |Cite
|
Sign up to set email alerts
|

On inefficiency of the shape memory alloys in dynamically loaded sandwich plates with structural damping: New 3D zigzag-viscoelasticity theory and asymmetric transformations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 89 publications
0
3
0
Order By: Relevance
“…Based on the superiorities explained in Ref. [34], the following description that takes the transverse deformability of the plate into account is used: ux,y,z,t=u0x,y,t+normalΛxx,y,tz+z2ϑxx,y,tsinh0truezh+λxx,y,tcosh0truezhvx,y,z,t=v0x,y,t+normalΛyx,y,tz+z2ϑyx,y,tsinh0truezh+λyx,y,tcosh0truezhwx,y,z,t=scriptL1zwb+scriptL2zwm+scriptL3zwt\begin{equation} \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {u\left( {x,y,z,t} \right) = {u_0}\left( {x,y,t} \right) + {{{\Lambda}}_x}\left( {x,y,t} \right)z + {z^2}\left[ {{\vartheta _x}\left( {x,y,t} \right)\sinh \left( {\dfrac{z}{h}} \right) + {\lambda _x}\left( {x,y,t} \right)\cosh \left( {\dfrac{z}{h}} \right)} \right]}\\[15pt] {v\left( {x,y,z,t} \right) = {v_0}\left( {x,y,t} \right) + {{{\Lambda}}_y}\left( {x,y,t} \right)z + {z^2}\left[ {{\vartheta _y}\left( {x,y,t} \right)\sinh \left( {\dfrac{z}{h}} \right) + {\lambda _y}\left( {x,y,t} \right)\cosh \left( {\dfrac{z}{h}} \ri...…”
Section: The Theoretical Formulationsmentioning
confidence: 99%
See 2 more Smart Citations
“…Based on the superiorities explained in Ref. [34], the following description that takes the transverse deformability of the plate into account is used: ux,y,z,t=u0x,y,t+normalΛxx,y,tz+z2ϑxx,y,tsinh0truezh+λxx,y,tcosh0truezhvx,y,z,t=v0x,y,t+normalΛyx,y,tz+z2ϑyx,y,tsinh0truezh+λyx,y,tcosh0truezhwx,y,z,t=scriptL1zwb+scriptL2zwm+scriptL3zwt\begin{equation} \def\eqcellsep{&}\begin{array}{@{}*{1}{c}@{}} {u\left( {x,y,z,t} \right) = {u_0}\left( {x,y,t} \right) + {{{\Lambda}}_x}\left( {x,y,t} \right)z + {z^2}\left[ {{\vartheta _x}\left( {x,y,t} \right)\sinh \left( {\dfrac{z}{h}} \right) + {\lambda _x}\left( {x,y,t} \right)\cosh \left( {\dfrac{z}{h}} \right)} \right]}\\[15pt] {v\left( {x,y,z,t} \right) = {v_0}\left( {x,y,t} \right) + {{{\Lambda}}_y}\left( {x,y,t} \right)z + {z^2}\left[ {{\vartheta _y}\left( {x,y,t} \right)\sinh \left( {\dfrac{z}{h}} \right) + {\lambda _y}\left( {x,y,t} \right)\cosh \left( {\dfrac{z}{h}} \ri...…”
Section: The Theoretical Formulationsmentioning
confidence: 99%
“…Based on the superiorities explained in Ref. [34], the following description that takes the transverse deformability of the plate into account is used:…”
Section: The Hyperelasticity-matched Asymmetric Infinite-order Plate ...mentioning
confidence: 99%
See 1 more Smart Citation