2008
DOI: 10.4310/maa.2008.v15.n2.a5
|View full text |Cite
|
Sign up to set email alerts
|

On Instant Blow-up for Semilinear Heat Equations with Growing Initial Data

Abstract: For a semilinear heat equation admitting blow-up solutions a sufficient condition for nonexistence of local-in-time solutions are obtained. In particular, it is shown that if an initial data tends to infinity at space infinity then there is no local-in-time solution. As an application if the solution blows up at space infinity with least blow-up time, the solution cannot be extendable after blow-up time.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
2

Year Published

2015
2015
2020
2020

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(5 citation statements)
references
References 15 publications
0
3
0
2
Order By: Relevance
“…The study of the growth conditions on initial data for the existence of solutions to parabolic equations is a classical subject. The growth conditions generally depend on the diffusion and the nonlinear terms in the parabolic problems (see e.g., [1]- [3], [5], [7], [15], [16], [19]- [25], [27], [35] and [37]). For the heat equation, the following holds.…”
Section: Equation (14) Is a Nonlinear Parabolic Equation With The Fomentioning
confidence: 99%
See 1 more Smart Citation
“…The study of the growth conditions on initial data for the existence of solutions to parabolic equations is a classical subject. The growth conditions generally depend on the diffusion and the nonlinear terms in the parabolic problems (see e.g., [1]- [3], [5], [7], [15], [16], [19]- [25], [27], [35] and [37]). For the heat equation, the following holds.…”
Section: Equation (14) Is a Nonlinear Parabolic Equation With The Fomentioning
confidence: 99%
“…The growth conditions generally depend on the diffusion and the nonlinear terms in the parabolic problems (see e.g., [1]- [3], [5], [7], [15], [16], [19]- [25], [27], [35] and [37]). For the heat equation, the following holds.…”
Section: Introductionmentioning
confidence: 99%
“…wileyonlinelibrary.com/journal/mma the nonlinear capacity method. Further, instantaneous blow-up for nonlinear parabolic and hyperbolic equations was investigated by many authors (see, eg, previous studies [5][6][7][8] and the references therein). In particular, in Galakhov, 5 using the nonlinear capacity method, instantaneous blow-up results were obtained for several singular evolutionary problems.…”
Section: Introductionmentioning
confidence: 99%
“…В дальнейшем мгновенное разрушение в нелинейных параболических и гиперболических уравнениях рассматривалось в работах В. А. Галактионова и Х. Л. Вазкеза [5], Дж. Голдстейна и И. Комбе [6], Й. Гиги и Н. Умеды [7], Е. И. Галахова [8], [9] и других авторов. При этом в некоторых из этих работ использовался метод исследования, основанный на принципе сравнения (для параболических уравнений), а в работах Е. И. Галахова развит метод С. И. Похожаева, основанный на методе нелинейной емкости, что позволило гораздо быстрее и эффективнее получить достаточные условия отсутствия решений как для параболических, так и для гиперболических уравнений, включая уравнения высокого порядка (не соболевские).…”
unclassified
“…В рассмотренных задачах эффект мгновенного разрушения проявлялся тогда, когда -как в уравнении имелась сингулярность или когда -как в работе [7] -от начальной функции требовалось нестандартное условие роста. В уравнениях (1.1)-(1.3) явных сингулярностей нет, а на начальные функции мы не налагаем никаких специфических условий роста.…”
unclassified