A highly accurate new solver is developed to deal with the Dirichlet problems for the 2D Laplace equation in the doubly connected domains. We introduce two circular artificial boundaries determined uniquely by the physical problem domain, and derive a Dirichlet to Dirichlet mapping on these two circles, which are exact boundary conditions described by the first kind Fredholm integral equations. As a direct result, we obtain a modified Trefftz method equipped with two characteristic length factors, ensuring that the new solver is stable because the condition number can be greatly reduced. Then, the collocation method is used to derive a linear equations system to determine the unknown coefficients. The new method possesses several advantages: mesh-free, singularity-free, non-illposedness, semi-analyticity of solution, efficiency, accuracy, and stability.