In the absence of the axiom of choice, new results concerning sequential, Fréchet-Urysohn, k-spaces, very k-spaces, Loeb and Cantor completely metrizable spaces are shown. New choice principles are introduced. Among many other theorems, it is proved in ZF that every Loeb, T 3 -space having a base expressible as a countable union of finite sets is a metrizable second-countable space whose every F σ -subspace is separable; moreover, every G δ -subspace of a second-countable, Cantor completely metrizable space is Cantor completely metrizable, Loeb and separable. It is also noticed that Arkhangel'skii's statement that every very k-space is Fréchet-Urysohn is unprovable in ZF but it holds in ZF that every first-countable, regular very k-space whose family of all nonempty compact sets has a choice function is Fréchet-Urysohn. That every second-countable metrizable space is a very k-space is equivalent to the axiom of countable choice for R.