The microstructure/texture evolution and strengthening of 316 L-type and 304 L-type austenitic stainless steels during cold rolling were studied. The cold rolling was accompanied by the deformation twinning and micro-shear banding followed by the strain-induced martensitic transformation, leading to nanocrystalline microstructures consisting of flattened austenite and martensite grains. The fraction of ultrafine grains can be expressed by a modified Johnson-Mehl-Avrami-Kolmogorov equation, while inverse exponential function holds as a first approximation between the mean grain size (austenite or martensite) and the total strain. The deformation austenite was characterised by the texture components of Brass, {011}<211>, Goss, {011}<100>, and S, {123}<634>, whereas the deformation martensite exhibited a strong {223}<110> texture component along with remarkable γ-fibre, <111>∥ND, with a maximum at {111}<211>. The grain refinement during cold rolling led to substantial strengthening, which could be expressed by a summation of the austenite and martensite strengthening contributions.