“…11) and(3.12), is equivalent to(∇T )(W, X, Y, Z) = −g(Jh(W, BY ), Z)JBX − g(BJh(W, Y ), Z)JBX −g(CY, Z)h(W, CX) + g(CY, Z)JCJh(W, X) +g(Jh(W, BX), Z)JBY + g(BJh(W, X), Z)JBY +g(CX, Z)h(W, CY ) − g(CX, Z)JCJh(W, Y ) −g(Jh(W, CY ), Z)JCX − g(CJh(W, Y ), Z)JCX −g(BY, Z)h(W, BX) + g(BY, Z)JBJh(W, X) +g(Jh(W, CX), Z)JCY + g(CJh(W, X), Z)JCY +g(BX, Z)h(W, BY ) − g(BX, Z)JBJh(W, Y ).Remark that the terms involving s(W ) cancel two by two. When taking the cyclic sum over W , X and Y , the expression simplifies tocyclic W,X,Y (∇T )(W, X, Y, Z) = cyclic W,X,Y ( − g(Jh(W, BY ), Z)JBX − g(CY, Z)h(W, CX) + g(Jh(W, BX), Z)JBY + g(CX, Z)h(W, CY ) − g(Jh(W, CY ), Z)JCX − g(BY, Z)h(W, BX) + g(Jh(W, CX), Z)JCY + g(BX, Z)h(W, BY )).By combining (5.7) and (5.8) for W = e i , X = e j , Y = e k and Z = e ℓ , we obtain (5.1).By taking i, j and k mutually different and ℓ = k in (5.1), we obtain (5.2), (5.3) and (5.4) up to renaming the indices.…”