A method for the on-line quantification of Mn concentration in molten steel was examined. Application of atomic absorption spectrometry using a wavelength-variable laser as the light source was attempted. When the laser emission wavelength was set to the absorption center wavelength in a laboratory melting furnace experiment, it was difficult to measure Mn concentrations of more than 1.0% in the molten steel. Investigation on the relationship between the laser emission wavelength and absorbance was performed using an atomic absorption burner and it was found that the absorption sensitivity could be adjusted by shifting the wavelength from the absorption center wavelength. We reduced the absorption sensitivity to about 1/10 by shifting the laser emission wavelength about 0.015 nm from the absorption center to the longer wavelength side, and performed a melting furnace experiment again. Possibility of directly quantifying Mn concentrations of up to 1.5% or higher was demonstrated.