2018
DOI: 10.1142/s0219622018500086
|View full text |Cite
|
Sign up to set email alerts
|

On-Line Case-Based Policy Learning for Automated Planning in Probabilistic Environments

Abstract: Many robotic control architectures perform a continuous cycle of sensing, reasoning and acting, where that reasoning can be carried out in a reactive or deliberative form. Reactive methods are fast and provide the robot with high interaction and response capabilities. Deliberative reasoning is particularly suitable in robotic systems because it employs some form of forward projection (reasoning in depth about goals, pre-conditions, resources and timing constraints) and provides the robot reasonable responses i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?