Cysteine-containing peptide oxidation was studied both by using an inert platinum electrode and a sacrificial electrode (copper or zinc) generating metallic ions in electrospray ionization mass spectrometry (ESI-MS). Using peptides containing one, two and three cysteines, we have compared the different chemical and electrochemical oxidation pathways of cysteine (RS ÀII H) to cystine (RS ÀI S ÀI R) and to sulfenic, sulfinic and sulfonic acid (RS 0 OH, RS II O 2 H and RS IV O 3 H, respectively). In the absence of copper ions, intra-molecular reactions were the most abundant, whereas inter-molecular reactions were found to be enhanced by the presence of copper ions. These cations favor the formation of 2 : 1 (peptide : copper) complexes compared to 1 : 1 complexes, thus enhancing the formation of inter-molecular bridges. This study highlights the importance of the position of cysteine inside a peptide during disulfide bridge formation.