2014
DOI: 10.4028/www.scientific.net/amm.610.265
|View full text |Cite
|
Sign up to set email alerts
|

On-Line Handwriting Recognition Based on Hopfield Neural Network

Abstract: In this paper, Discrete Hopfield Neural Network (DHNN) is adopted to realize handwritten characters recognition. First, learning samples are preprocessed including binarization, normalization and interpolation. Then pixel features are extracted and used to establish DHNN. The handwritten test samples and noise corrupted samples are finally inputted into the network to verify its recognition performance. Simulation results reveal that DHNN has good fault tolerance and disturbance rejection performance. In addit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?