Let $G$ be a finite, undirected and simple graph. A bijection $f : V(G) \to [1,|V(G)|]$ is called a local edge antimagic labeling if for any two adjacent edges $uv,vw \in E(G), f(u) \ne f(w)$. The local edge antimagic chromatic number $\ch(G)$ is the minimum number of colors taken over all colorings induced by local edge antimagic labeling of $G$. In this paper, we investigate characterization of graphs $G$ with small number $\ch(G)$, relationship between local edge antimagic chromatic number $\ch(G)$ and edge independence number $\alpha'(G)$, and bounds of $\ch(G)$ for any graphs.