2017
DOI: 10.17516/1997-1397-2017-10-3-385-395
|View full text |Cite
|
Sign up to set email alerts
|

On Local Solvability of the System of the Equations of One Dimensional Motion of Magma

Abstract: The local solvability of initial-boundary value problem for the system of the equations of non stationary motion of magma is proved.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 6 publications
0
3
0
2
Order By: Relevance
“…Вопросы обоснования в этих работах не рассматривались. В некоторых частных случаях вопросы обоснования данной модели рассмотрены в [34][35][36][37].…”
Section: Doiunclassified
“…Вопросы обоснования в этих работах не рассматривались. В некоторых частных случаях вопросы обоснования данной модели рассмотрены в [34][35][36][37].…”
Section: Doiunclassified
“…The local in time solvability of the initial-boundary value problem for the equations ( 1)-( 3) at constant temperature in the case of a compressible fluid was established in the work [5]. A numerical analysis of the initial-boundary value problem for the system (1)-( 3) is carried out in [6]: difference schemes are constructed and their convergence is established.…”
Section: Problem Statementmentioning
confidence: 99%
“…, such that 0 < ϕ < 1, 0 < θ < ∞. These functions satisfy the equations (1)- (4) and the initial and boundary conditions (5) and regarded as continuous functions in Q T . Theorem 1.…”
Section: Definition By a Solution Of Problem (1)-(5) We Mean The Set Of Functionsmentioning
confidence: 99%
See 1 more Smart Citation
“…Локальная разрешимость по времени. Система уравнений, описывающая процесс фильтрации вязкой сжимаемой жидкости в деформируемой несжимаемой пористой среде в Эйлеровых координатах (x, t) ∈ Q T = Ω × (0, T ) [7], следуя [8], [9], сводится к системе уравнений в безразмерных переменных Лагранжа (x , t ):…”
unclassified