2022
DOI: 10.48550/arxiv.2207.11594
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On Locality of Harmonic Generalized Barycentric Coordinates and Their Application to Solution of the Poisson Equation

Abstract: We first extend the construction of generalized barycentric coordinates (GBC) based on the vertices on the boundary of a polygon Ω to a new kind of GBCs based on vertices inside the Ω of interest. For clarity, the standard GBCs are called boundary GBCs while the new GBCs are called interior GBCs. Then we present an analysis on these two kinds of harmonic GBCs to show that each GBC function whose value is 1 at a vertex (boundary or interior vertex of Ω) decays to zero away from its supporting vertex exponential… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?