On Loss Functionals for Physics-Informed Neural Networks for Steady-State Convection-Dominated Convection-Diffusion Problems
Derk Frerichs-Mihov,
Linus Henning,
Volker John
Abstract:Solutions of convection-dominated convection-diffusion problems usually possess layers, which are regions where the solution has a steep gradient. It is well known that many classical numerical discretization techniques face difficulties when approximating the solution to these problems. In recent years, physics-informed neural networks (PINNs) for approximating the solution to (initial-)boundary value problems ((I)BVPs) received a lot of interest. This paper studies various loss functionals for PINNs that are… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.