One of the key aspects of the automation of machining processes is the elimination of manual measurements. This is crucial in the production of precision parts, where the absence of in-process control can lead to an increased number of non-compliant parts, resulting in financial losses for the company. In addition to economic considerations, environmental care is a fundamental requirement for manufacturing companies. While many efforts focus on finding environmentally friendly coolants or reducing machining time, researchers often overlook the impact of the measurement method on the balanced development of machining. The conditions inside CNC machines are quite demanding in terms of maintaining measurement stability. For this reason, this paper presents a comparative study of two types of machine inspection probes. The influence of the measurement axis and the effect of returning the probe to the magazine on the accuracy of the measurement were examined. This study revealed that the probe with a kinematic resistive design has a higher measurement uncertainty (2.7 µm) than a probe based on strain gauges (0.6 µm). This paper emphasizes the positive impact of the conducted activity on the sustainability of machining, highlighting benefits such as resource savings, energy savings, and positive effects on the health and safety of operators.